
To compute bearing loads, the forces which act on the
shaft being supported by the bearing must be
determined. Loads which act on the shaft and its related
parts include dead load of the rotator, load produced
when the machine performs work, and load produced by
transmission of dynamic force. These can theoretically
be mathematically calculated, but calculation is difficult in
many cases.

A method of calculating loads that act upon shafts that
convey dynamic force, which is the primary application of
bearings, is provided herein.

4.1  Load acting on shafts
4.1.1   Load factor

There are many instances where the actual operational
shaft load is much greater than the theoretically
calculated load, due to machine vibration and/or shock. 
This actual shaft load can be found by using formula
(4.1).

K＝ fw・Kc ……………………………（4.1）
where,

K ：Actual shaft load   N｛kgf｝
fw：Load factor (Table 4.1)
Kc：Theoretically calculated value   N｛kgf｝
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Table 4.1  Load factor fw

Amount
of shock Application

Heavy shock

Light shock

Very little or
no shock

Electric machines, machine tools,
measuring instruments.

Railway vehicles, automobiles,
rolling mills, metal working machines,
paper making machines, printing 
machines, aircraft, textile machines, 
electrical units, office machines.

Crushers, agricultural equipment,
construction equipment, cranes.

1.0～1.2

1.2～1.5

1.5～3.0

fw

Ks＝ Kt・tanα（Spur gear） ……（4.3a）

＝ Kt・
tanα

（Helical gear）……（4.3b）cosβ

Kr ＝√Kt
2＋Ks

2 ………………………（4.4）

Ka ＝ Kt・tanβ（Helical gear） ……（4.5）
where,

Kt：Tangential gear load (tangential force), N {kgf}
Ks：Radial gear load (separating force), N {kgf}
Kr：Right angle shaft load (resultant force of

tangential force and separating force), N {kgf}
Ka：Parallel load on shaft, N {kgf}
H：Transmission force , kW
n：Rotational speed, min-1

Dp：Gear pitch circle diameter, mm
α：Gear pressure angle, deg
β：Gear helix angle, deg

Because the actual gear load also contains vibrations
and shock loads as well, the theoretical load obtained by
the above formula should also be adjusted by the gear
factor fz as shown in Table 4.2.

4.  Bearing Load Calculation

Fig. 4.1   Spur gear loads

Ks

Kt

Fig. 4.2    Helical gear loads

Ks

Kt

Ka

Fig. 4.3    Radial resultant forces

Kt

Kr Ks

D
p

4.1.2   Gear load
The loads operating on gears can be divided into three

main types according to the direction in which the load is
applied; i.e. tangential (Kt), radial (Ks), and axial (Ka).
The magnitude and direction of these loads differ
according to the types of gears involved. The load
calculation methods given herein are for two general-use
gear and shaft arrangements: parallel shaft gears, and
cross shaft gears.

(1)Loads acting on parallel shaft gears
The forces acting on spur gears and helical gears are
depicted in Figs. 4.1, 4.2, and 4.3. The load magnitude
can be found by using or formulas (4.2), through (4.5).

Kt＝
19.1×106・H

N
Dp・n

＝
1.95×106・H

｛kgf｝

……（4.2）

Dp・n

｝
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(2)Loads acting on cross shafts
Gear loads acting on straight tooth bevel gears and

spiral bevel gears on cross shafts are shown in Figs. 4.4
and 4.5. The calculation methods for these gear loads are
shown in Table 4.3. Herein, to calculate gear loads for
straight bevel gears, the helix angle β= 0.

The symbols and units used in Table 4.3 are as follows:

Kt ：Tangential gear load (tangential force), N {kgf}
Ks ：Radial gear load (separating force), N {kgf}
Ka ：Parallel shaft load (axial load), N {kgf}
H ：Transmission force, kW
n ：Rotational speed, min-1

Dpm ：Mean pitch circle diameter, mm
α ：Gear pressure angle, deg
β ：Helix angle, deg
δ ：Pitch cone angle, deg

Because the two shafts intersect, the relationship of
pinion and gear load is as follows:

Ksp＝Kag…………………（4.6）
Kap＝Ksg…………………（4.7）

where,
Ksp，Ksg：Pinion and gear separating force, N {kgf}
Kap，Kag：Pinion and gear axial load, N {kgf}

K tp

Kap

Ksg 

Kag

Ktg

Ksp

Fig. 4.4  Loads on bevel gears

D pm

2

K a

K s

K t

βδ

Fig. 4.5  Bevel gear diagram

Parallel load on gear 
shaft (axial load)

Ka

Ks=Kt tanα cosδ 
cosβ 

 + tanβsinδ 

Kt=
19.1×106・H

Dpm・n ,
1.95×106・H

Dpm・n

Radial load
(separation force) 

Ks

Tangential load (tangential force) 
Kt

Types of load

Rotation
direction
Helix
direction

Driving side

Driven side

Driving side

Driven side

Ks=Kt tanα cosδ 
cosβ 

 - tanβsinδ 

Ks=Kt tanα cosδ 
cosβ 

 - tanβsinδ Ks=Kt tanα cosδ 
cosβ 

 + tanβsinδ 

Ka=Kt tanα sinδ 
cosβ 

 - tanβcosδ Ka=Kt tanα sinδ 
cosβ 

 + tanβcosδ 

Ka=Kt tanα sinδ 
cosβ 

 + tanβcosδ Ka=Kt tanα sinδ 
cosβ 

 - tanβcosδ 

 Clockwise Counter clockwise  Clockwise Counter clockwise

Right Left Left Right

Table 4.3   Loads acting on bevel gears 

Gear type

Ordinary machined gears
(Pitch and tooth profile errors of less than 0.1 mm)

Precision ground gears
(Pitch and tooth profile errors of less than 0.02 mm) 1.05～1.1

1.1～1.3

fz

Table 4.2  Gear factor fz

For spiral bevel gears, the direction of the load varies
depending on the direction of the helix angle, the direction
of rotation, and which side is the driving side or the driven
side. The directions for the separating force (Ks) and axial
load (Ka) shown in Fig. 4.5 are positive directions. The
direction of rotation and the helix angle direction are
defined as viewed from the large end of the gear. The
gear rotation direction in Fig. 4.5 is assumed to be
clockwise (right).



4.1.3   Chain / belt shaft load
The tangential loads on sprockets or pulleys when

power (load) is transmitted by means of chains or belts
can be calculated by formula (4.8).

Kt＝
19.1 ×106・H

N
Dp・n

……………（4.8）

＝
1.95×106・H

｛kgf｝
Dp・n

where,

Kt：Sprocket/pulley tangential load, N  {kgf}

H：Transmitted force, kW

Dp：Sprocket/pulley pitch diameter, mm

For belt drives, an initial tension is applied to give
sufficient constant operating tension on the belt and
pulley. Taking this tension into account, the radial loads
acting on the pulley are expressed by formula (4.9). For
chain drives, the same formula can also be used if
vibrations and shock loads are taken into consideration.

Kr＝f b・Kt…（4.9）
where,

Kr：Sprocket or pulley radial load, N {kgf}

f b：Chain or belt factor (Table 4.4)

4.2  Bearing load distribution
For shafting, the static tension is considered to be

supported by the bearings, and any loads acting on the
shafts are distributed to the bearings.

For example, in the gear shaft assembly depicted in
Fig. 4.7, the applied bearing loads can be found by using
formulas (4.10) and (4.11).

This example is a simple case, but in reality, many of
the calculations are quite complicated.

FrA＝
a+b

F1＋
d

F2 ……………（4.10）
b c+d

FrB＝－
a

F1＋
c

F2 ……………（4.11）
b            c+d

where,
FrA：Radial load on bearing A,   N {kgf}
FrB：Radial load on bearing B,   N {kgf}
F1, F2：Radial load on shaft,   N {kgf}

If directions of radial load differ, the vector sum of each
respective load must be determined.
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Fig. 4.6  Chain / belt loads

Chain or belt type f b

V-belt

Timing belt

Flat belt (w / tension pulley)

Flat belt

1.2～1.5

1.5～2.0

1.1～1.3

2.5～3.0

3.0～4.0

Chain (single)

Table. 4.4   chain or belt factor f b

F1

Kr

D
p

F2

Loose side

Tension side

c d

a b

FrA

F! F@

FrB

Bearing A Bearing B

Fig. 4.7

｝
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4.3   Mean load
The load on bearings used in machines under normal

circumstances will, in many cases, fluctuate according to
a fixed time period or planned operation schedule. The
load on bearings operating under such conditions can be
converted to a mean load (Fm), this is a load which gives
bearings the same life they would have under constant
operating conditions.

(1) Fluctuating stepped load 
The mean bearing load, Fm, for stepped loads is
calculated from formula (4.12). F1 , F2 ....... Fn are the
loads acting on the bearing; n1, n2.......nn and t1, t2.......
tn are the bearing speeds and operating times
respectively.

Fm＝〔Σ（Fi
p

ni ti）〕
1/p

…………………（4.12）Σ（ni ti）
where:

p＝3 For ball bearings
p＝10/3 For roller bearings
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(3) Linear fluctuating load
The mean load, Fm, can be approximated by formula
(4.14).

Fm＝
Fmin＋2Fmax

…（4.14）3

F

F1

FmF2

Fn

nn tnn1 t1 n2t2

Fig. 4.8  Stepped load

Fig. 4.11  Sinusoidal variable load

F

Fm

F(t)

2to0 to t

Fig. 4.9  Load that fluctuated as function of time

F

Fmax

Fmin

Fm

t

Fig. 4.10  Linear fluctuating load

(2) Continuously fluctuating load
Where it is possible to express the function F(t) in
terms of load cycle to and time t, the mean load is
found by using formula (4.13).

Fm＝〔 1
∫

to

F（t）
p

d t 〕
1/p
………………（4.13）

to o

where:
p＝3 For ball bearings
p＝10/3 For roller bearings

Fmax

Fm

t

F

F

Fmax

Fm

t

（a）

（b）

(4) Sinusoidal fluctuating load
The mean load, Fm, can be approximated by formulas
(4.15) and (4.16).

case (a) Fm＝0.75Fmax………（4.15）
case (b) Fm＝0.65Fmax………（4.16）



4.4   Equivalent load

4.4.1  Dynamic equivalent load
When both dynamic radial loads and dynamic axial

loads act on a bearing at the same time, the hypothetical
load acting on the center of the bearing which gives the
bearings the same life as if they had only a radial load or
only an axial load is called the dynamic equivalent load.

For radial bearings, this load is expressed as pure
radial load and is called the dynamic equivalent radial
load. For thrust bearings, it is expressed as pure axial
load, and is called the dynamic equivalent axial load.

(1) Dynamic equivalent radial load
The dynamic equivalent radial load is expressed by
formula (4.17).

Pr＝XFr＋YFa………………（4.17）
where, 

Pr：Dynamic equivalent radial load,   N {kgf}
Fr：Actual radial load,   N {kgf}
Fa：Actual axial load,   N {kgf}
X：Radial load factor
Y：Axial load factor

The values for X and Y are listed in the bearing tables.

(2) Dynamic equivalent axial load
As a rule, standard thrust bearings with a contact angle
of 90˚ cannot carry radial loads. However, self-aligning
thrust roller bearings can accept some radial load. The
dynamic equivalent axial load for these bearings is
given in formula (4.18).

Pa＝Fa＋1.2Fr………………（4.18）
where,

Pa：Dynamic equivalent axial load,   N {kgf}
Fa：Actual axial load,   N {kgf}
Fr：Actual radial load,   N {kgf}

Provided that Fr / Fa≦ 0.55 only.

4.4.2 Static equivalent load
The static equivalent load is a hypothetical load which

would cause the same total permanent deformation at the
most heavily stressed contact point between the rolling
elements and the raceway as under actual load
conditions; that is when both static radial loads and static
axial loads are simultaneously applied to the bearing.

For radial bearings this hypothetical load refers to pure
radial loads, and for thrust bearings it refers to pure centric
axial loads.  These loads are designated static equivalent
radial loads and static equivalent axial loads respectively.

(1) Static equivalent radial load
For radial bearings the static equivalent radial load can
be found by using formula (4.19) or (4.20). The greater
of the two resultant values is always taken for Por.

Por＝Xo Fr＋Yo Fa…（4.19）
Por＝Fr …………… （4.20）

where,
Por：Static equivalent radial load,   N {kgf}
Fr：Actual radial load,   N {kgf}
Fa：Actual axial load,   N {kgf}
Xo：Static radial load factor
Yo：Static axial load factor

The values for Xo and Yo are given in the respective
bearing tables.

(2) Static equivalent axial load
For spherical thrust roller bearings the static equivalent
axial load is expressed by formula (4.21).

Poa＝Fa＋2.7Fr…（4.21）
where,

Poa：Static equivalent axial load,   N {kgf}
Fa：Actual axial load,   N {kgf}
Fr：Actual radial load,   N {kgf}

Provided that Fr / Fa≦ 0.55 only.

4.4.3  Load calculation for angular contact ball
bearings and tapered roller bearings

For angular contact ball bearings and tapered roller
bearings the pressure cone apex (load center) is located
as shown in Fig. 4.12, and their values are listed in the
bearing tables.

When radial loads act on these types of bearings the
component force is induced in the axial direction. For this
reason, these bearings are used in pairs. For load
calculation this component force must be taken into
consideration and is expressed by formula (4.22).

Fa ＝
0.5Fr

…………………（4.22）
Y

where,
Fa: Axial component force, N {kgf}
Fr: Radial load, N {kgf}
Y: Axial load factor

The dynamic equivalent radial loads for these bearing
pairs are given in Table 4.5.
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Fig. 4.12  Pressure cone apex and axial component force

a

α 

Load center Load center
Fa

Fr

Fr
Fa
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Y1

0.5Fr1≦ 
Y2

0.5Fr2＋ Fa

Y1

0.5Fr1＞ 
Y2

0.5Fr2＋ Fa

Y2

0.5Fr2≦ 
Y1

0.5Fr1＋ Fa

Y2

0.5Fr2＞ 
Y1

0.5Fr1＋ Fa

Fa1＝ 
Y2

0.5Fr2＋ Fa

Fa2＝ 
Y1

0.5Fr1－ Fa

Fa2＝ 
Y1

0.5Fr1＋ Fa

Fa1＝ 
Y2

0.5Fr2－ Fa

Fa

Fr1

Rear

Front

Rear

Front

Fr2

Fa

Fr2 Fr1

Fr1 Fr2

Fa

Fr2 Fr1

Fa

Brg1 Brg2

Brg2 Brg1

Brg1 Brg2

Brg2 Brg1

Axial loadLoad conditionBearing arrangement

Note 1: Applies when preload is zero.
2: Radial forces in the opposite direction to the arrow in the above illustration are also regarded as positive.
3: Dynamic equivalent radial load is calculated by using the table on the right of the size table of the bearing after
    axial load is obtained for X and Y factor.

Table 4.5  Bearing arrangement and dynamic equivalent load
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4.5  Bearing rating life and load calculation
examples

In the examples given in this section, for the purpose of
calculation, all hypothetical load factors as well as all
calculated load factors may be presumed to be included
in the resultant load values.

――――――――――――――――――――――――――――――――――――
(Example 1)
What is the rating life in hours of operation (L10h)
for deep groove ball bearing 6208 operating at 
rotational speed n = 650 min-1, with a radial load Fr of 
3.2 kN {326 kgf} ?
――――――――――――――――――――――――――――――――――――

From formula (4.17) the dynamic equivalent radial load:

Pr＝Fr＝3.2kN｛326kgf｝
Basic dynamic load rating Cr for bearing 6208 given on

page B-12 is 29.1 kN {2970 kgf}, ball bearing speed factor
fn relative to rotational speed n = 650 min-1 from Fig. 3.1
is fn = 0.37. Thus life factor fh from formula (3.5) is:

f h＝fn
Cr
＝0.37×

29.1
＝3.36

Pr 3.2

Therefore, with fh = 3.36 from Fig. 3.1 the rated life, L10h,
is approximately 19,000 hours.

――――――――――――――――――――――――――――――――――――
(Example 2)
What is the life rating L10h for the same bearing and
conditions as in Example 1, but with an additional
axial load Fa of 1.8 kN {184 kgf} ?
――――――――――――――――――――――――――――――――――――

To find the dynamic equivalent radial load value for Pr,
the radial load factor X and axial load factor Y are used.
Basic static load rating Cor for bearing 6208 given on page
B-12 is 17.8 kN {1820 kgf} and  fo is 14.0. Therefore:

fo・Fa
＝

14×1.8
＝ 1.42

Cor 17.8

Calculating by the proportional interpolation method
given on page B-13, e = 0.30.

For the operating radial load and axial load:

Fa
＝

1.8
＝0.56＞e=0.30

Fr 3.2

From page B-13 X = 0.56 and Y = 1.44, and from
formula (4.17) the equivalent radial load, Pr, is:

Pr＝XFr＋YFa＝0.56×3.2＋1.43×1.8

＝4.38 kN｛447kgf｝

From Fig. 3.1 and formula (3.1) the life factor, fh, is:

f h＝fn
Cr
＝ 0.37×

29.1 
＝ 2.46

Pr 4.38

Therefore, with life factor fh = 2.46, from Fig. 3.1 the
rated life, L10h, is approximately 7,500 hours.

――――――――――――――――――――――――――――――――――――
(Example 3)
Determine the optimum model number for a
cylindrical roller bearing operating at the rotational 
speed n = 450 min-1, with a radial load Fr of 200 kN
{20,400kgf}, and which must have a life (L10h) of over 
20,000 hours.
――――――――――――――――――――――――――――――――――――

From Fig. 3.1 the life factor fh = 3.02 (L10h at 20,000),
and the speed factor fn = 0.46 (n = 450 min-1). To find the
required basic dynamic load rating, Cr, formula (3.1) is
used.

Cr＝
f h

Pr＝
3.02 

×200
f n 0.46

＝1,313kN｛134,000kgf｝

From page B-92, the smallest bearing that fulfills all the
requirements is NU2336 (Cr = 1,380 kN {141,000kgf}).



Equally, the equivalent radial load for bearing@is:

Fa@
＝

1.87   
＝0.45＜e＝0.36

Fr@ 4.18

Pr@＝ XFr@＋Y@ Fa@＝0.4×4.18＋1.67×1.87

＝4.79kN｛489kgf｝

From formula (3.5) and Fig. 3.1 the life factor,  f h, for

each bearing is

f h1＝ fn
Cr1
＝0.293×54.5／5.98＝2.67

Pr1

f h2＝ fn
Cr2
＝0.293×42.0／4.79＝2.57

Pr2

Therefore: a2  ＝ 1.4（4T-tapered roller bearings shown in
B-130)

Lh1＝13,200×a2

＝13,200×1.4
＝18,480 hour

Lh2＝11,600×a2

＝11,600×1.4
＝16,240 hour

The combined bearing life, Lh, from formula (3.3) is:

1
Lh＝

〔 1 ＋ 1 〕1/e

Lh1
e

Lh2
e

1
＝

〔 1 ＋ 1 〕8/9

18,4809/8 16,2409/8

＝9,330 hour
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70 100
170

15
0

Bearings2
(4T-32205)

 Bearings1
(4T-32206)

Fig. 4.13  Spur gear diagram

The gear load from formulas (4.2), (4.3a) and (4.4) is:

Kt＝
19.1×106・H

＝
19,100×150

Dp・n          150×2,000

＝9.55kN｛974kgf｝

Ks＝Kt・tanα＝9.55×tan20˚

＝3.48kN｛355kgf｝

Kr＝√Kt
2＋Ks

2＝√9.552＋3.482

＝10.16kN｛1,040kgf｝

The radial loads for bearings ! and @ are:

Fr1＝
100

Kr＝
100
×10.16＝5.98kN｛610kgf｝170        170

Fr2＝
70

Kr＝
70  
×10.16＝4.18kN｛426kgf｝170        170

0.5Fr1
＝1.87＞

0.5Fr2
＝1.25

Y1 Y2

The axial loads for bearings!and@are:

Fa1＝0kN｛0kgf｝

Fa2＝
0.5Fr1

＝
0.5×5.98 

＝1.87kN｛191kgf｝
Y1 1.60

From page B-129, the equivalent radial load for bearing

!is:

Fa1
＝

0   
＝0＜e＝0.37

Fr1 5.98

Pr1＝ Fr1＝5.98kN｛610kgf｝

――――――――――――――――――――――――――――――――――――
(Example 4)
The spur gear shown in Fig. 4.13 (pitch diameter Dp = 
150 mm, pressure angleα= 20˚) is supported by a pair 
of tapered roller bearings, 4T-32206  (Cr = 54.5 kN 
{5,600 kgf}) and 4T-32205 (Cr = 42 kN {4300 kfg}). 
Find rating life for each bearing when gear transfer 
power H = 150 kW and rotational speed n = 2,000 min-1.
――――――――――――――――――――――――――――――――――――



The equivalent radial load, Pr, for each operating condition
is found by using formula (4.17) and shown in Table 4.7.
Because all the values for Fri and Fai from the bearing tables
are greater than Fa / Fr > e＝ 0.18, X＝ 0.67, Y2＝ 5.50.

Pri ＝ XFri＋Y2 Fai＝ 0.67Fri＋ 5.50Fai

From formula (4.12) the mean load, Fm, is:

Fm =〔
Σ（Pri

10/3
・ni・φi）

〕
3/10

＝48.1kN｛4,906kgf｝
Σ（ni・φi）
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――――――――――――――――――――――――――――――――――――
(Example 5)
Find the mean load for spherical roller bearing 23932
(La = 320 kN {33,000 kgf}) when operated under the 
fluctuating conditions shown in Table 4.6.
――――――――――――――――――――――――――――――――――――

Condition
No.
i

Operating
time

Radial load Axial load Revolution

φi
Fri

％ kN｛ kgf ｝ min-1

1 5 1200

2 10 1000

3 60 800

4 15 600

5 10 400

Fai ni

2｛   204 ｝ 10｛ 1020 ｝ 

12｛ 1220 ｝ 

20｛ 2040 ｝ 

25｛ 2550 ｝ 

30｛ 3060 ｝ 

4｛   408 ｝ 

6｛   612 ｝ 

7｛   714 ｝ 

10｛ 1020 ｝ 

kN｛ kgf ｝ 

Table 4.6

Table 4.7

Condition No. 
i

Equivalent radial load. Pri

kN｛ kgf ｝ 

1
2
3
4
5

17.7｛ 1805 ｝ 
30.0｛ 3060 ｝ 
46.4｛ 4733 ｝ 
55.3｛ 5641 ｝ 
75.1｛ 7660 ｝ 
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――――――――――――――――――――――――――――――――――――
(Example 6)
Find the threshold values for rating life time and 
allowable axial load when cylindrical roller bearing 
NUP312 is used under the following conditions:
Provided that intermittent axial load and oil lubricant.

Radial load  Fr＝10kN｛1,020kgf｝

Rotational speed  n＝2,000 min-1

――――――――――――――――――――――――――――――――――――

Radial load is:

Pr＝Fr＝10kN｛1,020kgf｝
The speed factor of cylindrical roller bearing, fn, at n＝
2,000 min-1, from Table 3.1

fn＝〔 33.3   〕
3/10
＝0.2932,000

The life factor, f h, from formula (3.4) 

f h＝0.293×
124  

＝3.6310

Therefore the basic rated life, L10h , from Table 3.1

L10h ＝500×3.6310/3≒37,000

And next, allowable axial load of cylindrical roller bearing is
shown in page B-79.

In formula (1) on page B-79, based on NUP312 from Table
4 on page B-79, k = 0.065.

dp＝（60＋130）/2＝95mm，n＝2,000 min-1

Take into consideration that intermittent axial load.

dp・n×104＝19×104

In Fig. 1 on page B-79, dp・n = 19×104. In the case of
intermittent axial load, allowable surface pressure at the lip
Pt＝ 40 MPa.

Therefore the allowable axial load, Pt, following

Pz ＝0.065×602×40＝9,360N｛954kgf｝
Based on Table 4 of page B-79, it is within the limits of 

Fa max＜ 0.4×10,000 = 4,000 N. Therefore Pt＜ 4,000 N
{408 kgf}.


